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Abstract

Bayesian networks (BIN) are an excellent tool for modeling uncertainties
in systems with several interdependent variables. A BN is a directed
acyclic graph, and consists of a structure, or the set of directional links
between variables that depend on other variables, and conditional prob-
abilities (CP) for each variable. In this project, we apply BN’s to un-
derstand uncertainties in NIF ignition experiments. One can represent
various physical properties of National Ignition Facility (INIF) capsule
implosions as variables in a BN. A dataset containing simulations of NIF
capsule implosions was provided. The dataset was generated from a
radiation hydrodynamics code, and it contained 120 simulations of 16
variables. Relevant knowledge about the physics of NIF capsule implo-
sions and greedy search algorithms were used to search for hypothetical
structures for a BN. Our preliminary results found 6 links between vari-
ables in the dataset. However, we thought there should have been more
links between the dataset variables based on the physics of NIF capsule
implosions. Important reasons for the paucity of links are the relatively
small size of the dataset, and the sampling of the values for dataset vari-
ables. Another factor that might have caused the paucity of links is the
fact that in the dataset, 20% of the simulations represented successful
fusion, and 80% didn’t, (simulations of unsuccessful fusion are useful for
measuring certain diagnostics) which skewed the distributions of several
variables, and possibly reduced the number of links. Nevertheless, by
illustrating the interdependencies and conditional probabilities of several
parameters and diagnostics, an accurate and complete BN built from an



appropriate simulation set would provide uncertainty quantification for
NIF capsule implosions.

1 An Introduction to Bayesian Networks

1.1 The Bayesian Approach to Probability

An essential tool used in every field of the sciences is probability. Without it, there
would be practically no advances in many fields of science. The traditional approach
towards probability, or the frequentist approach [1][2], involves studying an event
by performing a large number of trials, and measuring the frequency of successful
outcomes. A larger number of trials will lead to a more accurate estimate of the
probability of success for this event. This approach is ubiquitous, and is used for
measuring events such as mutation rates in DNA replication, to the viscosity of
liquids, to the work functions of metals.

However, some events don’t lend themselves to a large number of trials because
the event might occur very rarely (such as measuring certain astrophysical proper-
ties), or because performing a single trial is very expensive (such as testing nuclear
weapons). Studying these events with the aforementioned frequentist approach is
very difficult. A different approach towards studying these situations is called the
subjective approach [2], and involves using Bayesian statistics. Bayesian statistics
are more general than frequentist statistics since Bayesian statistics regards proba-
bility as a degree of belief [1]|, which removes the need for the large number of trials
necessary for frequentist statistics. In probability, the product rule states

P(X,Y)

P(X|Y) = P (1)

where P(X|Y') represents the probability that event X is true given that event Y
is already true, P(X,Y’) represents the probability that both events X and Y are
true, and P(Y") represents the probability that event Y is true. (Intuitively, this
rule states that the probability for any two events to occur is the probability that
the first event and the probability that the second event occurs given that the first
event has already occurred.) By noting that P(X,Y) = P(Y, X), one can drive
Bayes’ theorem, which states that

P(Y|X) P(X)
P(Y)

PX]Y) = (2)

As stated previously, Bayes’ theorem is practical for studying events that don’t lend
themselves to a large number of studies. For example, suppose one has a hypothesis



about some astrophysical properties. Then, when those properties can be measured
and data about those properties can be recorded, Bayes’ theorem states that

P(D|H)-P(H)

P(H|D) = =5 ®

where P(H|D) is the probability that the hypothesis is true given that the data was
observed, and P(D|H) is the probability that the data will be observed given that the
hypothesis is accurate. Alternatively, P(H) is the prior probabliity of the hypothesis
being correct, P(H|D) is the posterior probability of the hypothesis being correct,
and P(D|H) is the probability of observing the data given the specific hypothesis.
For example, assume a scientist is deciding between two different models regarding
those properties, and according to the scientist’s prior studies, the first hypothesis
(H;) is accurate with probability p;, and the second hypothesis (H,) is accurate
with probability ps. Then, one can determine the relative likelihood of the two
hypotheses with the ratio of the probabilities of each hypothesis being true given
the data observed, or

P(|D) _ P(D|t)-P(th) _ P(D|H)p, "
P(H,|D) ~ P(DIy)-P(l;) ~ P(D|H:)p;’

where the P(D) term from Eq. 3 gets canceled. Since all terms in Eq. 4 are known,
the scientist can determine the relative likelihood of the two hypotheses.

1.2 Bayesian Networks

As mentioned previously, Bayes’ theorem takes into account how probabilities change
when data is observed. However, studying a system with a large number of events
or variables can be very complicated. An excellent tool to study these systems is
a Bayesian network (Bayes net, or BN). A BN is a directed acyclic graph (DAG),
meaning it contains no feedback mechanisms (Graph IV in Fig. 1) [2][3]. In a BN,
the variables are called nodes and are represented by circles, and the interdepen-
dencies are called edges and are represented by arrows. The arrow pointing from A
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Figure 1: Graphs I-III are DAG’s, and represent Bayesian networks (BN’s). Graph IV is not a
BN, as it contains a feedback mechanism (red).



to B (Graph I. in Fig. 1) means that event B directly depends on event A, and not
vice versa. In Graph I., A is said to be the parent of B and C. In Graph II., both
D and E. are the parents of F.

BN’s allow for visualization of the interdependencies between events. A major
advantage is that BN’s simplify our calculation of the joint probability distribution
(joint PDF) of the system, or the probability that the system is in a specific state.
With the joint probability of the system, we can calculate any conditional probabil-
ity, which is extremely useful for measuring systems with limited data. Because each
event only depends on its parents, the probability of each event can be calculated
by|2]

P(X = ;) = P(X = x;|Parents(X = z;)) (5)

where P(X=x;) is the probability that event X is in a specific state. If event X
were discrete, then P(X=x;) would be the probability that X is in state x;. If X
were continuous, then P(X=x;) would be the probability that the value of X lies
between x; and x; + Ax. Although BN’s can theoretically deal with events with a
continuous distribution of values, one usually needs a distribution function to model
those values [4]. Therefore, the rest of this paper will discuss BN’s with discrete
valued variables.

1.3 A Simple Example of Bayesian Networks

An example of modeling a system with BN’s concerns the case of a patient who has
tested postive for a rare, harmful disease. Treatment for this disease is expensive
and would severely reduce her quality of life, so it’s important that she receive
accuate information about whether or not she has the disease. The disease is rare,
and only occurs in one in a thousand people. The patient tests positive 99.5% of
the time if she has the disease, and 10% of the time if she is healthy (Fig. 2A).
Initally, one might think that a patient who tests positive almost certainly has the
disease. However, from Bayes’ theorem (Eq. 2), we find out the patient’s probability
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Figure 2: The first graph (left) shows a Bayesian net for the rare disease example, illustrated
below. The second graph (right) shows a hypothetical Bayes net for a NIF capsule implosion.




of having the rare disease is

P(+|D)-P(D) .995-.001

P(D|+) = =
(D[+) Po) 995-.001 + .1-.999

=9.86-1073, (6)

which is much lower then one would initially expect. An intuitive explanation of
the solution is that the cause of a patient’s positive test is much more likely to come
from a false positive reading than from actually having the disease, because the
prior probability of having the disease is so rare.

Although this problem can be solved without its Bayes net (Fig. 2A), the Bayes
net does illustrate the concept of conditional independence. From this example, the
correlation of patients testing positive and testing negative is very close to -1, as it’s
extremely rare (though not impossible) for a patient to receive positive and negative
test results. However, because both the probabilities of positive and negative test
results only depend on whether the patient has the disease, the events of a positive
test result and a negative test result are conditionally independent from each other.
Formally, this can be expressed as

P(+|D, =) = P(+[D), (7)

where P(+|D,-) is the probability that the patient tests positive given that we know
whether the patient has the disease and whether the patient tests negative, and
P(+|D) is the probability that the patient tests positive given that we know whether
the patient has the disease. (If events X and Y are truly independent, then P(X]Y)
= P(X).)

The goal of this project is to model the probabilistic interdependencies of NIF
capsule implosions with Bayes nets. Section 2 will present various methods of gen-
erating a Bayesian network structure from a dataset (referred to as the ‘dataset’
throughout this paper) of simulations of NIF capsule implosions (provided by Brian
Spears, Lawrence Livermore National Laboratories, Livermore, CA) generated by a
radiation hydrodynamics code [5|. The dataset contained 120 simulations with 16
variables (Appendix). The end of section 2 will describe estimating the conditional
probabilities for the Bayes net. Section 3 will present the results from generating a
Bayes net based on the dataset. Finally, section 4 will present a brief conclusion,
including future considerations.



2 Training an optimal Bayesian Network Based on
Raw Data

2.1 Finding an Optimal Subset of Structures for the Bayesian
Network

All calculations were perfomed with Matlab (R2006b), the Bayes Net Toolbox for
Matlab |6], and the Structure Learning extension |7].

As stated previously, since we were interested in a Bayes net with discrete valued
variables, we had to discretize the data in the dataset. We discretized the data into
equal length bins, and analyzed the discretized data with 5, 10, and 20 bins.

Generating a Bayes net from data first requires one to find an optimal structure.
As stated previously, the BN structure is the set of directed links between all vari-
ables in the network. Any variable can link to any other variable provided the links
are not cyclic. Ideally, one would enumerate and rank all possible structures for a
BN, and select the optimal structure based on the rankings.

Unfortunately, the number of possible structures scales super-exponentially with
the number of variables, making the previous approach impractical for any BN with
more than 4-5 variables. From a recursive formula [8] used to calculate the number
of possible structures as function of the number of variables in the BN,

S(n) = Z (—1)i*+ (”) 91 (=) (3 — ), (8)

- 1
=1

where n is the number of variables, and S is the number of structures, there are
about 8.38-10% possible BN structures for a network with 16 variables. Therefore,
we had to reduce the space of possible structures for the BN.

We used a combination of heuristic algorithms and relevant knowledge about the
physics of NIF capsule implosions [9] to help us search for an optimal BN structure.
To search the entire dataset for optimal structures, we used a greedy search algo-
rithm [7] to approximate a solution for an optimal structure. The disadvantages of
a greedy search technique are that it usually does’t find the optimal structure, and
that it must depend on the required starting choice.

Relevant knowledge about the physics of NIF implosions was used to limit the
space of possible BN networks. The first 4 of the 16 dataset variables (Appendix)
were designated as “truth” variables, because these four properties can summarize a
capsule implosion with respect to the yield margin [10]. The remaining 12 variables
were designated as diagnostics, because they measure output properties of a capsule
implosion. Also, unlike the truths, these variables can be directly measured. When



Groups of Dataset Variables
Variable # | Group | Variable # | Group | Variable # | Group
1. Ty 5. E(t) 11. RC
2. Ty 6. E(t) 12. IT
3. Ty 7. NS 13. IT
4 Ty 8. NS 14. IT
9. NS 15. NII
10. NS 16. NII

Table 1: This table shows how the dataset variables were grouped. The first group were the truth
variables (Ty), which dealt with capsule implosion properties. Variables 5-6 dealt with energy
produced as a function of time (E(t)). Variables 7-10 dealt with the neutron energy spectrum
(NS). Variable 11 represents the ratio of two radiochemical reactions (RC). Variables 12-14 deal
with invasive imaging (IT), and the last two variables (15-16) dealt with non-invasive imaging (NII).
See the appendix for a more detailed explanation of the variables.

separating the variables into two groups, we assumed that links between variables
can only flow from the truths to the diagnostics. This distinction between the truths
and diagnostics reduced the number of possible networks from 8.38-10¢ to 2.81-1014.
We made further reductions to the space of possible BN structures by grouping
related variables (Table 1), and exhaustively searching over grouped variables.

2.2 Mechanisms for Scoring the Structures

In order to find an optimal BN structure, we needed a mechanism to rank possible
BN structures with respect to the data in the dataset. The optimal structure would
contain the most likely set of links between the dataset variables based on the
dataset. Although there are several mechanisms for scoring BN structures, such as
the widely used Bayesian Information Criterion (BIC) [11], we ranked the possible
BN structures using a Bayesian scoring method [12], which was based on the BN
structures’ marginal likelihood, or integrated likelihood.

Marginal likelihood works by integrating the model over all possible parameters.
In our case, the model is a possible BN structure, and the parameters are the
conditional probabilities for each variable. In order to find an optimal BN structure
for the dataset, we had to compute P(M;|x), where M; is a possible BN structure,
and x is the data in the dataset. (Bayesian statistics allows one to compute the
probability of parameters in a model. Conversely, frequentist statistics doesn’t allow
this; one can only compute the likelihood of a model, and not it’s probability. See
[13] for a more detailed discussion.) From Bayes’ theorem (Eq. 2), we find that

P(x|M;) P(M;)

P(Mi|r) =



where M; is a possible BN structure, P(x|M;) is the probability of observing the data
assuming M; were the correct BN structure, P(M;) is the probability of M; being
an optimal BN structure independently of the data, and P(x) is the probability of
observing the data. Since we assumed all BN structures were equally likely, we set
P(M;) = P(M;) Vj. To compute P(x|M;), we integrate out M, over all possible
conditional probabilities, or

Pl M) = / P(x|M;,0) P(0|M;) b, (10)

where 6 represents the conditional probabilities for M;. Note that the first term in
the integral, P(x|M;,0), is a simple frequentist probability — it merely states that
given a complete BN, find the probability of observing the data in x. The second
term in the integral, P(6|M;), is the probability of a BN structure having a specific
set of probabilities. Since we had no bias towards a particular set of conditional
probabilities for a given BN structure, we set this term to have a Dirichlet, or flat
top, distribution. (If we did have a bias towards a particlular set of conditional
probabilities, we could have used a Gaussian distribution here.)

Computing the P(x) term (Eq. 9) is difficult, as P(x) represents the probability
of observing the given data. Technically, computing P(x) would require us to know
all possible models that could have generated the data, as

P(z) = Zp(x|Mz)P(Mz> (11)
However, when comparing the relatively likelihood of one BN structure towards

another BN structure, the P(x) term is cancelled, and we are left with (Eq. 4)

P(z|M;) P(M;)
P(x|M;) P(M;)’

b, M;) = (12)

where ég(Mi,Mj) is the likelihood of M, relative to M;. With this approach, we
could determine the relative likelihood of one BN structure with respect to another
BN structure, and find an optimal BN structure for the data.

2.3 Estimating the Conditional Probabilities

After finding an optimal structure, one needs to find a set of conditional probabilities
for each dataset variable in order to have a complete BN. To find conditional proba-
bilities for a BN based on the dataset and the optimal structure, we used maximum
likelihood estimation (MLE). For example, if one has a coin that yields seven heads
after ten coin flips, then the probability of the coin landing heads is most likely
0.7. (This concept returns to the discussion in |13] of inverse probability. Also, this
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Links Between Individual Truth and Diagnostic Variables
Truth # | Diagnostic # Likelihood of a Link*

1. 6. 2.4

1. 8. 6.9-10°

2. 5. 4.9-10°

3. 6. 12.1

3. 9. 2.0-10%

3. 12. 3.1-10%

3. 14. 511

x« P(Link Exists Between Variables [ Data)
P(No Link Exists | Data)

Table 2: Optimal structures obtained from exhaustively searching the set of all possible individual
links between truth and diagnostic variables. We found 7 links out of 48 total possible links. The
link between variables 3. and 12. was the strongest, whereas the link between variables 1. and
6. was the weakest. The equation used for likelihood of a link comes from (Eq. 12).

example is one of the rare MLE examples that can be solved analytically [14].) In
our case, if a dataset variable had no parents in our optimal BN structure, then the
conditional proababilities for that variable simply reflect its behavior in the dataset.
If the dataset variable did have parents, then its conditional probabilities reflect its
behavior and its parents’ behavior in the dataset. Since our dataset contains 120
simulations for each variable, this method provided us with a good approximation
of the conditional probabilities.

3 Preliminary Results

3.1 Finding Optimal Structures

As stated previously, our dataset contained 16 variables, which leads to 8.38-10%
possible BN structures. In order to find an optimal structure, we either exhaus-
tively searched small subsets of possible BN structures, or used a greedy search
algorithm to search larger subsets of BN structures, including the set of all possible
BN structures [7]. One method we used to limit the set of possible BN structures
is by dividing the variables into truths and diagnostics (Table 1).

The simplest subset of possible BN structures we could search is the subset con-
taining single connections between one truth variable, and one diagnostic variable.
Here, we only had to compare two possible BN structures — either there was a link
from the truth to the diagnostic variable, or there wasn’t. Using eqution 12, we
could determine the relative likelihood of whether there was a link between the two
variables. Any relative likelihood ratio greater than 1 meant that there was likely



a link between the two variables. Our results show that at the 5 bin level, there
were only seven likely links between individual truth and diagnostic variables. At
the 10 and 20 bin levels, there were no likely links between the truth and diagnostic
variables.

We then exhaustively searched the subset of BN structures containing links be-
tween all 4 truths and 1 diagnostic variable, and the subset of BN structures con-
taining 1 truth and all 12 diagnostic variable. At the 5 bin level searching the subset
of BN structures containing links between 4 truths and 1 diagnostic variable yielded
all links in Table 2 excluding the link between variables 1 and 6. Searching this
subset at the 10 bin level yielded links between all 4 truth variables and variable 9.
Searching this subset at the 20 bin level yielded 12 links. These links were between
all 4 truths, and variables 5, 9, and 14 (Fig. 3A-C). For the subset of BN structures
containing links between 1 truth and all 12 diagnostic variables, at the 5 bin level,
we found the seven links in Table 2 (Fig. 3D). At the 10 and 20 bin levels, the
optimal structures contained no links (Fig. 3E).

We also exhaustively searched the subset of BN structures containing links be-
tween all 4 truths, and the 5 groups of diagnostic variables (Table 1). Some of these
subsets were rather large; the largest subset contained 2'® = 65536 possible BN
structures. Therefore, in order to reduce the subset of BN structures, we forced the
results to contain the six links in Table 2 (all links except the link between variables
1 and 6). At the 5 bin level (Fig. 4A), the optimal structures didn’t contain any ad-
ditional links. Interestingly, at the 10 bin level, our optimal BN structure contained
additional links between truth and diagnostic variables. In addition to exhaustively
searching small subsets of BN structures, we used greedy search techniques [7] to
search over all possible BN structures containing links between truth and diagnos-
tic variables, and the entire dataset. At the 5 bin level, when searching over all
possible BN structures containing links between truth and diagnostic variables, our
optimal structure only contained the six strongest links from Table 2. When we
ignored the division between truth and diagnostic variables, and searched over the
entire dataset, our optimal structure contained 7 links between variables (Fig. 5).
At the 10 and 20 bin level, our optimal structures obtained from a greedy search
algorithm contained no links between any variables. In unpublished work, Brenda
Ng of Lawrence Livermore National Laboratory, has used a more rigorous approach
on the same dataset with comparable results.

3.2 Estimating Conditional Probabilities

We used a maximum likelihood estimate (MLE) to estimate the conditional prob-
abilities. At the 5 bin level, assume that our optimal BN structure only contains
the six strongest links in Table 2 (Fig. 3A). There are two types of variables in this

10



Figure 3: Structures A - C are the optimal structures obtained from searching the subset of BN
structures containing links between all 4 truths and 1 diagnostic variable at the 5, 10, and 20 bin
level respectively. D shows the BN structure obtained from searching the subset of BN structures
containing links between 1 truth and all 12 diagnostic variables at the 5 bin level, and E shows
the BN structure from the 10 and 20 bin levels.
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Figure 4: A and B contain the structures generated from exhaustively groups of variables at
the 5 and 10 bin level respectively. Red arrows represent links that we forced these BN structures
to have. Black arrows represent additional links learend when we divided the diagnostic variables
into groups. At the 5 bin level (A), the optimal structures only contained the forced links (red

arrows). But at the 10 bin level (B), the optimal structures contained additional links.
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Figure 5: The broken red arrows represent the optimal strucutre generated from a greedy search
over all possible links between truth and diagnostic variables. Not coincidentally, these six links are
the six strongest links in Table 2. The solid blue arrows represent the optimal structure generated
from a greedy search algorithm over the entire dataset.

optimal structure — variables with and without parent variables.

For example, consider the case of variables 2 and 5 (Fig. 6). Since variable 2
has no parents, the MLE of its probabilities is simply its frequency in the dataset.
The probability that variable 2 is in state #1 is .14, because in the dataset, variable
#2 is in state #1 14% of the time. The MLE of the conditional probabilities for
variable 5 depends on its frequency and variable 2’s frequency. The probability that
variable 5 is in state #1 is .19 if variable 2 is in state 4, and .83 if variable 2 is in
state 5. The probability that variable 5 is in state #1 is

5
P(5=51) =) P(5=5[2=8;) P(2=5;) = .19-.17 + .83-.1 = .115, (13)
=1

where S; is the i’th state. At the 5 bin level, each variable would have 5 conditional
probabilities, where P is the number of parents for the variable. Similarly, at the
10 bin level, each variable would have 10" conditional probabilities.

3.3 Explaining Links Between Variables

As stated previously, we found six strong links between truth and diagnostic vari-
ables (Table 2). We can use relevant physics knowledge and the conditional prob-
abilities to explain the link between variables 2 and 5. Variable 2 represents the
capsule implosion velocity, and variable 5 represents the time it took the capsule to
implode. Intuitively, capsules with higher implosion velocities won’t take as long to
implode as capsules with lower implosion velocities. The conditional probabilities

13



(Fig. 6E) confirm this. If the velocity is in a low state (states #1 and #2) then
imposion time is likely to be in a high state (states #4 and #5) and vice versa.

Relevant physics knowledge can also be used to explaining the other five links
between truth and diagnostic variables. The strongest link is between variables 3
and 12. Variable 3 represents the RMS radius of the hotspot, and variable 12
represents the average radius of the limb obtained from invasive imaging. Similarly,
the link between variables 3 and 14, the average collinear density, is due to the
fact that a capsule with a larger RMS hotspot radius will have less material outside
the hotspot, and a lower collinear density. The link between variables 3 and 6, the
“burn width”, or the FWHM of the E(t) (Energy produced vs. time, see Appendix)
curve, is also fairly intuitive. A capsule with a larger RMS hotspot radius will have
more material burning, and thus, a larger burn width.

The remaining two links are between variables 1 (capsule entropy) and 8 (fraction
of high energy (17-22 MeV) neutrons in the neutron spectrum), and 3 and 9 (fraction
of low energy (10-13 MeV) neutrons in the neutron spectrum). The products of the
deuterium-tritium collision are a 3.5 MeV alpha particle, and a 14 MeV neutron, so
the neutron spectrum is sharply peaked around 14 MeV. Although most of these 14
MeV neutrons quickly leave the capsule, some of them will scatter off of material,
and either lose or gain energy. A reason that variable 1 (capsule entropy) is related
to variable 8 (fraction of high energy neutrons) is that systems with high entropies
usually don’t have a lot of burn, which means very few 14 MeV neutrons. Since the
14 MeV neutrons can gain energy by scattering off other particles, fewer 14 MeV
neutrons results in fewer high energy neutrons. A reason that 3 (RMS hotspot
radius) is related to 9 (fraction of low energy neutrons) is that a greater hotspot
radius means that the neutrons have to travel larger distances to leave the capsule,
so more neutrons will lose some energy when leaving the capsule. However the
reasons for the links between these variables are not well understood, and need to
be investigated further.

4 Conclusion

At the 5 bin level after dividing the dataset variables into truth variables and diag-
nostic variables, most of the structures we found only contained 6 links between the
truths and diagnostics. We had expected that there would be more links between
the truths and diagnostics. An important reason why we found fewer links than we
expected is the relatively small size of the dataset, which only contained 120 sim-
ulations. In fact, when we performed a greedy search over the entire dataset, our
optimal structure only contained 7 links. Other factors to consider are data binning
and sampling. In order to find a link between two variables, we needed a good
range of values for each variable. This required the dataset to contain appropriate
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sampling of all sixteen variables. However, some of the dataset variables had very
skewed distributions. Since we binned the data using equal length bins, in cases
with an extremely skewed distribution of values, binning these variables resulted
in almost all the values ending up in one bin. This made it extremely difficult to
resolve links between these variables.

There were also physical reasons that we had a small number of links. Although
dividing the dataset variables into truths and diagnostics facilitated our search for
optimal BN structures, in order to divide the variables into truths and diagnostics,
we made several major assumptions. Specifically, we assumed that the truth vari-
ables were independent from each other, and that the diagnostics were conditionally
independent given the appropriate truth variables. In reality, the truth variables are
approximately independent from each other over a certain range of values. For ex-
ample, if variable 1 (entropy) were extremely high, that would limit the range of
values for variable 2 (implosion velocity). Another factor that influenced our results
is the fact that in the dataset, only about 20% of the simulations represented suc-
cessful thermonuclear fusion. Successful and unsuccessful simulations are useful in
measuring different diagnostic properties of a capsule implosion. Our results might
have been different if we were only studying successful or unsuccessful simulations.

In conclusion, with an appropriate dataset, we could construct a complete Bayesian
network for modelling capsule implosions. This would allow us to determine the in-
terdependencies of different variables. Specifically, we could determine the actual
properties of capsule implosions, which aren’t directly measurable, based on the
appropriate diagnostics. This allows for uncertainty quantification for NIF capsule
implosions.
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Appendix: Dataset Variables

The dataset analyzed for this project contained sixteen variables. As stated pre-
viously, the first four variables are truths, because they can summarize the energy
yield of a NIF capsule implosion [10]. These variables are (1.) capsule entropy
during implosion, (2.) capsule velocity during implosion, (3.) the RMS radius of
the hotspot, and (4.) 1 - the percentage of DT in the shell during implosion. This
last variable mainly measures the percentage of ablator that fails to ablate, and gets
imploded along with the DT shell.

The remaining twelve variables represent measurable diagnostic properties of a
capsule implosion. The first two diagnostic variables are (5.) the time it took the
capsule to implode, and (6.) the FWHM of the peak of the burn history of the
capsule. The next four variables deal with the neutron spectrum: (7.) the total
number of neutrons with energies around 14 MeV produced, the fraction of neutrons
with energies between (8.) 17-22 MeV, and (9.) 10-13 MeV, and (10.) the FWHM
of the peak of the neutron spectrum (Fig. 7). The next variable is (11.) the ratio
of the end products of two radiochemical reactions,

DT 127] 1 Xe 4 2n, (14)

at +*0 —* Ne + 1n. (15)

The three subsequent variables, (12.) average limb radius, (13.) RMS limb radius
+ average limb radius, and (14.) limb pr (the collinear density), are obtained from
ARC imaging of the limb. The final two variables, (15.) average radius and (16.)
RMS radius =+ average radius are obtained from self-emission of high energy X-rays.
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Figure 6: A and B are histograms showing the distribution of variables 2 and 5 at the 5 bin
level. C is the BN structure that shows a directed link between the two variables. D is the set
of probabilities for variable 2. E is the set of conditional probablities of variable 5. Variable 5’s
probabilities depend on the behavior of variables 2 and 5. Together, C-E represent a complete
Bayes net for variables 2 and 5.
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Figure 7: Neutron spectrum used for variables 7-10. Variable 7 represents the peak of the
spectrum for all neutrons (blue). Variables 8-9 represent the fraction of all neutrons between 10-
13 MeV and 17-22 MeV respectively. Variable 10 represents the FWHM of the curve for primary
neutrons (orange).
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